

Degree programme "Technical Management" Master of Engineering

Programm description

Stand vom: Mai 2020

Table of contents

Pi	rofile	. 3
M	odulmatrix	. 4
	Certificate Module	. 5
1.	Semester	. 7
	Advanced Management Techniques	. 7
	Design, Engineering and Management of Companies	10
	Optimization for Engineering and Management	14
2.	Semester	17
	Analysis and Design of Transportation Networks	17
	Cyberphysical Production Systems	21
	Enhanced Technologies for Mobility	24
	IT-Systems Implementation in Logistics	26
	IT-Systems Implementation in Production	30
	IT-Systems Implementation Transportation Systems	34
	Management of Transport Companies	37
	Mobility Concepts	40
	Product Lifecycle Management	43
	Production Systems and Networks	46
	Supply Chain Management	50
	System Dynamics in Production and Logistics	53
	Transportation Technologies	56
3.	Semester	59
	Master's Colloquium	59
	Master's Thesis	62

Profile

About the degree programme:

The Technical Management degree programme is jointly organised and run by the Industrial Engineering, Logistics and Transportation Systems Technology departments at TH Wildau.

It is primarily aimed at graduates holding bachelor's degrees in these fields, but is also open to all graduates with a degree in any related field.

Study objectives:

The degree programme has a more technical emphasis. It also contains courses on business administration and information systems and gives graduates an integrative and responsible understanding of tasks in technically oriented management roles as well as the interface between engineering sciences and business administration.

Modulmatrix

Module	Sem.	Art	V	Ü	L	Р	ges.	PF	СР
Certificate Module	0	WPM	0.0	0.0	0.0	24.0	24.0	SMP	30.0
Advanced Management Techniques	1	PM	3.0	3.0	0.0	0.0	6.0	SMP	7.0
Design, Engineering and Management of Companies	1	PM	0.0	4.0	0.0	8.0	12.0	SMP	15.0
Optimization for Engineering and Management	1	PM	2.0	2.0	2.0	0.0	6.0	KMP	8.0
Analysis and Design of Transportation Networks	2	WPM	2.0	1.0	1.0	0.0	4.0	KMP	5.0
Cyberphysical Production Systems	2	WPM	2.0	1.0	1.0	0.0	4.0	KMP	5.0
Enhanced Technologies for Mobility	2	WPM	2.0	2.0	0.0	0.0	4.0	FMP	5.0
IT-Systems Implementation Transportation Systems	2	WPM	1.0	1.0	2.0	0.0	4.0	SMP	5.0
IT-Systems Implementation in Logistics	2	WPM	2.0	1.0	1.0	0.0	4.0	SMP	5.0
IT-Systems Implementation in Production	2	WPM	1.0	1.0	2.0	0.0	4.0	SMP	5.0
Management of Transport Companies	2	WPM	2.0	1.0	1.0	0.0	4.0	KMP	5.0
Mobility Concepts	2	WPM	2.0	2.0	0.0	0.0	4.0	KMP	5.0
Product Lifecycle Management	2	WPM	2.0	2.0	0.0	0.0	4.0	FMP	5.0
Production Systems and Networks	2	WPM	2.0	1.0	1.0	0.0	4.0	KMP	5.0
Supply Chain Management	2	WPM	2.0	2.0	0.0	0.0	4.0	FMP	5.0
System Dynamics in Production and Logistics	2	WPM	2.0	2.0	0.0	0.0	4.0	KMP	5.0
Transportation Technologies	2	WPM	2.0	2.0	0.0	0.0	4.0	FMP	5.0
Master's Colloquium	3	PM	0.0	0.0	0.0	0.0	0.0	SMP	6.0
Master's Thesis	3	PM	0.0	0.0	0.0	0.0	0.0	SMP	24.0
Summe der Semesterwochenstunden			29	28	11	32	100		
Summe der zu erreichende CP aus WPM									30
Summe der CP aus PM									60
Gesammtsumme CP									90

V - Vorlesung
 Ü - Übung
 PF - Prüfungsform
 CP - Credit Points

L - Labor PM - Pflichtmodul

P - Projekt WPM - Wahlpflichtmodul

FMP - Feste Modulprüfung

SMP - Studienbegleitende Modulprüfung

KMP - Kombinierte Modulprüfung

^{*} Modul erstreckt sich über mehrere Semester

Certificate Module

Module: Certificate Module	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. pol. Jens Wollenweber & Steffi Kowalski	

Semester:	Semester part time:	Duration:				
Hours per week per semester: 24.0	Of which L/S/LW/P: 0.0/0.0/0.0/24.0	CP according to ECTS: 30.0				
Form of course: Elective	Language: English	As of: 2020-05-04				
Recommended prior kno	wledge:					
Recognition of external relevant qualification/experience:						
Special regulations:						

Workload distribution	Hours:
In class:	360.0
Pre- and post-course work:	0.0
Project:	540.0
Examinations:	0.0
Total:	900

Lerning objectives	Anteil		
Subject specific competences			
Knowledge	0%		
Skills	0%		

Certificate Module

Personal competences			
Social competence	0%		
Autonomy			

Content:

1. Das Zertifikatsmodul umfasst ein vom Studiengangsprecher zu definierendes und von einem Hochschullehrer zu bewertendes Praxisprojekt, z.B. Transferprojekt, Fallstudie. Dieses Projekt muss konkret abgrenzbar sein und eine Aufgabenstellung aus dem Themenfeld des technischen Managements aufweisen. Das Ergebnis des Projektes wird in einer schriftlichen Projektdokumentation mit bis zu 50 Seiten dargestellt. Die Projektdokumentation wird als Prüfungsleistung für das Zertifikatsmodul undifferenziert mit "mit Erfolg" / "ohne Erfolg" bewertet. Bewertungskriterien sind die inhaltliche Qualität, Konsistenz der Struktur und Argumentation, die Identifikation von Projekterfolgs- und Projektrisikofaktoren, eine Reflexion der Projektergebnisse und der Erfahrungen sowie Schlussfolgerungen aus dem Projekt

Examination format:		
Paper (100%)		
Compulsory reading:		
Recommended reading:		

Advanced Management Techniques

Module: Advanced Management Techniques	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. DrIng. Thomas Masurat	

Semester:	Semester part time:	Duration:				
Hours per week per semester: 6.0	Of which L/S/LW/P: 3.0/3.0/0.0/0.0	CP according to ECTS: 7.0				
Form of course: Compulsory	Language: English	As of: 2020-04-26				
Compulsory prior knowledge:						
Recommended prior knowledge:						
Recognition of external relevant qualification/experience:						
Special regulations:						

Workload distribution	Hours:
In class:	90.0
Pre- and post-course work:	90.0
Project:	30.0
Examinations:	0.0
Total:	210

Advanced Management Techniques

Lerning objectives	Anteil				
Subject specific competences					
 Knowledge Applying tools and methods of conventional Project Management in complex undertakings Analyse possible risks and develop mitigation strategies within the concept of risk management Develop systems for adeqaut controlling of complex undertakings Identification and utilization of advanced management methods, approaches and tools Recognize and unterstand how to transfer different methods to new fields of application Capability to develop procedure models as guidelines to cope with complex tasks 	50%				
 Skills Plan, schedule and control complex undertakings in the context of modern companies Describe, analyze and modify complex undertakings in a structured and directed manner Perform the transfer of various methods and models to new fields of application. 	30%				
Personal competences					
Social competence • Be able to work in teams, organize team work and manage a project team • Be able to critically reflect and self-organize learning processes • Be able to communicate in a team work context and to present resulst	20%				
 Autonomy Be able to analyze and work on complex topics autonomously. Be able to speak freely about technical topics. Be able to adopt and assess critically specialized, advanced knowledge. 					

Advanced Management Techniques

Content:

- 1. Project Management
 - 1.1. Project organisation
 - 1.2. Project planning
 - 1.3. Network planning techniques
 - 1.4. Risk Management
 - 1.5. Controlling of Projects
- 2. Procedure Models
 - 2.1. Definition Procedure Model Problem Solving Process in general
 - 2.2. Demarcation of Model, Method and Algorithm
 - 2.3. Important Models for Innovation and Change Projects
 - 2.3.1. Models for Product Development
 - 2.3.2. Models for Software Development (Agile Development)
 - 2.3.3. Models for Improvement Projects
 - 2.3.4. Morphological Model for setting Objectives in Fachtory Planning

Examination format:

The actual examination procedures can be found in the examination plan, which is provided by the lecturer within the first two weeks of lectures. (100%)

Additional rules:

Perform given task in group including final presentation. Derive abstracts out of given scientific papers in individual presentations.

Compulsory reading:

Recommended reading:

VDI Guideline 5200, Part 2: "Morphological model of the factory for the setting of objectives in the factory planning"

VDI Guideline 2206: "Design methodology for mechatronic systems"

Module: Design, Engineering and Management of Companies	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. Marcus Ulrich Abramowski	

Semester:	Semester part time:	Duration:
Hours per week per semester: 12.0	Of which L/S/LW/P: 0.0/4.0/0.0/8.0	CP according to ECTS: 15.0
Form of course: Compulsory	Language: English	As of: 2019-04-30

Compulsory prior knowledge:

Desirable Basics from Bachelor-Studies: Basics in Logistics, Quality Management and Project Management

Recommended prior knowledge:

Basics from Module "Models and Methods for Engineering and Management"

Recognition of external relevant qualification/experience:

Special regulations:

In case of relevant student number, the module will be delivered in two streams. One stream for production and logistics, the other one for transportation aspects.

Workload distribution	Hours:
In class:	180.0
Pre- and post-course work:	100.0
Project:	150.0
Examinations:	10.0
Total:	440

Lerning objectives	Anteil	
Subject specific competences		
 Knowledge Decision management in companies can be reflected Execution and exercise of the Methods from Module "Models and Methods for Engineering and Management" Development of new concepts and processes regarding the end to end process in producing / transportation companies Decisions in site and structural matters of organisations Deflect organisational challenges in IT-and complex solutions Development of modern management processes and the related management functions Establish project organisations 	40%	
 Skills To manage and to solve complex problems in terms of planning, organising, controlling and leading in the context of global companies and organisations To find and asses alternative solutions and submit proposals for a decision Define business objectives Operate in business process reengineering projects Implement business processes (end to end) in IT-Systems Working in comprehensive and complex projects Reproduce processes in purchasing, logistics (internal and external), sales and distribution ERP-Solutions as well as transportation aspects in specific IT systems To control projects with project management tools 	40%	
Personal competences		
 Social competence Control of comprehensive project teams Conflict resolution internal and external Integration in interdisciplinary teams To manage work tasks in working groups To perform simple management tasks Moderation of steering committee and project management meetings Increase of motivation 	20%	
Autonomy To develop internal project teams Leading subprojects Take responsibility for decisions and Groups To analyze and evaluate learning and work processes To design and optimize learning and work		

Content:

- Strategic alignment of the plant / site / transportation needs and connection Analyze
 of the existing processes and incidents Deflection and assessment of the strategic
 parameters Knowledge management in organisations Evaluation of organisational
 aspects
- 2. Development of projects Project organisation and development of the project organisation BPMN for processes and their documentation Milestone Trend Analysis or Earned Value Analysis for controlling Documentation of projects (open issue lists etc.) Using strategies for project escalations
- 3. Applied business process engineering / reengineering Integrated description processes in organisation and IT (several levels of abstraction) Compare, select and operate the several methods in BPR Tools: ARIS / BPML Harmonization between organisational and IT-Processes
- 4. Global site strategies Position of the site in the supply chain Position of the site in strategy of the company • Position of the site in transportation aspects • Normative processes of the company
- 5. Solution for a model based company End to end planning processes Development of strategic, functional and anticipated processes Strategic (short and long term) planning scenarios in production and logistics as well transportation In- and Outsourcing
- IT-Systems implementation T-support for strategic, functional and anticipated processes • Realization of ERP-Functions • Go Live • Support after Go Live • Use of der ERP-Systems

Examination format:

Presentation (20%) Oral exam (80%)

Compulsory reading:

Ruhe, G. (2014). Software Project Management: Setting the Context. Springer.

Walter, M. (2015). Multi-Project Management with a Multi-Skilled Workforce. Springer.

Kirchmer, M. (1998). Business process oriented implementation of standard software. Berlin u.a.: Springer.

Anderson, G. (2009). SAP Implementation. SAMS.

Vollmann, T. (2004). Manufacturing planning and control for supply chain management.

Boston, Mass. [u.a.]: McGraw-Hill.

Akhtar, J. (2016). Production Planning and Control with SAP ERP. Galileo.

Davim, P. (2018). Progress in Lean Manufacturing. Springer.

Recommended reading:

Optimization for Engineering and Management

Module: Optimization for Engineering and Management	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. pol. Jens Wollenweber	

Semester:	Semester part time:	Duration:
Hours per week per semester: 6.0	Of which L/S/LW/P: 2.0/2.0/2.0/0.0	CP according to ECTS: 8.0
Form of course: Compulsory	Language: English	As of: 2020-05-04
Compulsory prior knowledge:		
Recommended prior knowledge:		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	90.0
Pre- and post-course work:	85.0
Project:	60.0
Examinations:	5.0
Total:	240

Optimization for Engineering and Management

Lerning objectives	Anteil
Subject specific competences	
Knowledge Explain and evaluate optimization models and methods Recognize and unterstand how to transfer different methods to new fields of application	50%
 Skills Describe, analyze and modify complex situations in a structured and directed manner Perform the transfer of various methods to new fields of application. Be able to apply optimization methodology to practical problems from production, logistics or transportation 	30%
Personal competences	
Social competence • Be able to work in teams, organize team work and manage a project team • Be able to critically reflect and self-organize learning processes • Be able to communicate in a team work context and to present resulst	20%
 Autonomy Be able to analyze and work on complex topics autonomously. Be able to speak freely about technical topics. Be able to adopt and assess critically specialized, advanced knowledge. 	

Content:

- 1. Introduction to Operations Research
- 2. Problems and models
- 3. Linear programming
 - 3.1. Models
 - 3.2. Graphical solution
 - 3.3. The simplex algorithm
- 4. Duality theory
- 5. Integer programming
- 6. Introduction to IBM ILOG CPLEX Optimization Studio

Optimization for Engineering and Management

Examination format:
Paper (50%) Project (50%)
Compulsory reading:
Hillier F., Lieberman G. (2014). Introduction to Operations Research. McGraw-Hill Education Ltd.
Recommended reading:

Module: Analysis and Design of Transportation Networks	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/1.0/1.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-01-15
Compulsory prior know Models and Methods for I	ledge: Engineering and Management	
Recommended prior kn	owledge:	
Recognition of external	relevant qualification/experier	nce:
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	36.0
Project:	50.0
Examinations:	4.0
Total:	150

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Students will by able to analyse, design and implement decision making processes in logistics and transportation networks optimization problems. 	35%
Skills • Students will be able to solve strategic, tactical and operational decisions • for clustering/covering problems • for assignment problems, • for finding optimal locations of facilities.	35%

Personal competences

Social competence

30%

- Students should be able to integrate knowledge and face the complexity
 of making judgements from information which, being incomplete or
 limited, include reflections on the social and ethical responsibilities linked
 to the application of their knowledge and judgements.
- Students should know how to communicate their conclusions, knowledge and final reasoning that they hold in front of specialist and non-specialist audiences clearly and unambiguously.
- Work collaboratively in a group.

Autonomy

- Address problems of management and coordination of logistics operations in production, transport and services in a holistic approach, by means of the consistent application of the supply chain management concepts and strategies, taking into account the pertinent aspects of environment, human capital, quality, technology, and economics.
- Apply a rigorous and efficient approach to problem solving
- Apply quantitative methods and techniques based on optimisation and/or simulation models in order to evaluate the different alternatives and select the most promising solution to be implemented
- Demonstrate abilities to document and reflect the problem-solving process in order to extract the lessons learned.
- Elaborate solid arguments based on quantitative models and analytical methods in order to convince and motivate decision makers and then plan and coordinate the project to implement the solution.
- Face a new problem under a scientific perspective.
- Identify the main aspects to be planned in the resolution of a logistic project, specifying the project boundaries, and leading with a solution.
- Select and apply the most relevant analytical methodologies, strategies and current technologies for designing solutions to the problems of management and coordination of material, information and financial flows.
- Student should possess an ability to learn that enables them to continue studying in a manner which is largely self-supervised or independent.

Content:

- 1. Selected theoretical basics for logistical decisions A. Model building B. Decision making and optimisation C. Optimisation software
- 2. Clustering Algorithms/Covering problems A C-means algorithms B Fuzzy C-Means algorithm C Set Covering problems D Maximum covering problems
- 3. Logistical Assignment Problems A The Standard Assignment Problem B Maximum Cardinality Problems C Generalised Assignment Problems
- 4. Location Problems A Facility Location Problems B Hub Location Problems

Examination format:

Project (50%) Written exam (50%)

Compulsory reading:

Hillier F., Lieberman G. (2014). Introduction to Operations Research, 10th ed., Irwin Industrial Engineering

Rodrigue, J.-P. (2017). The Geography of Transport Systems, 4th ed., Routledge

Recommended reading:

U.S. Department of Transportation (2015). The Transportation Planning Process: Key Issues

Cyberphysical Production Systems

Module: Cyberphysical Production Systems	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. DrIng. Jörg Reiff-Stephan	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/1.0/1.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-01-16
Recommended prior knowledge: Basic educational standards		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	88.0
Project:	0.0
Examinations:	2.0
Total:	150

Cyberphysical Production Systems

Lerning objectives	Anteil
Subject specific competences	
 Knowledge After the course the student will: - understand specific requirements of cyber-physical production systems and their complexity - be able to apply procedure, methods, tools for specifying, selecting, implementing, testing and analysing entities of cyber-physical production systems 	40%
Skills • After the course the student will: - be able to evaluate different digital alternatives and select the entities to be implemented - be able to knowing the risk in using of autonomous technical entities (i.e. mobile robots) as well as the importance of rules in social and technical level - elaborate solid arguments to convince and motivate decision makers	40%
Personal competences	
 Social competence The student is able to: - apply a rigorous and efficient approach to problem solving address design problems in Logistics Management and Control from a holistic approach demonstrate abilities to document and reflect the problem-solving process in order to extract the lessons learned present the solution in a sufficient way. 	20%
 Autonomy The student is able to: - elaborate solid arguments to convince/motivate decision makers evaluate different alternatives and select the Logistics Management and Control solution to be implemented face a new problem under a scientific perspective identify the main aspects to be planned in the resolution of a logistic project, specifying the project boundaries, and leading with a solution - select and apply the right methodologies and strategies to specify and formalise the requirements of a Logistics Management and Control system. Student should possess an ability to learn that enables them to continue studying in a manner which is largely self-supervised or independent 	

Cyberphysical Production Systems

Content:

- 1. Concept formation/ definitions
- 2. Control architecture of automated systems
- 3. Technical entities and closed loop controls for cyber-physical production
- 4. Methods and tools of a cyber-physical production system
- 5. Information flow horizontally and vertically: methods and examples
- 6. Human/Machine/Factory interaction
- 7. Multi-agent, multi-vendor systems
- 8. Human-robot collaboration/Middleware/Real-time systems

Examination format:

Written exam (25%)

Project (50%)

Presentation (25%)

Compulsory reading:

List of literature will given in first lesson

Recommended reading:

Cevikcan, E. & Ustundag, A. (2018). *Industry 4.0: Managing The Digital Transformation*. Cham: Springer.

E. A. Lee, "Cyber physical systems: Design challenges," Proceedings - 11th IEEE Symposium on Object/Component/Service-Oriented Real- Time Distributed Computing, ISORC 2008, pp. 363–369, 2008.

A. Bunte, B. Stein, and O. Niggemann, "Model-based diagnosis for cyber-physical production systems based on machine learning and residual-based diagnosis models." Hawaii, USA: Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Jul 2019

Anette Karltun, Johan Karltun, Martina Berglund, JörgenEklund. In: Applied Ergonomics Volume 59, Part A, March 2017, Pages 182-190

Zhang, L.; Fallah, Y. P.; Jihene, R. (2013). Cyber-Physical Systems: Computation, Communication, and Control. In: International Journal of Distributed Sensor Networks, vol. 2013, Article ID 475818, 2 pages, 2013. doi:10.1155/2013/475818

Enhanced Technologies for Mobility

Module: Enhanced Technologies for Mobility	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. DrIng. Stefan Kubica	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/2.0/0.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2019-04-05
Recommended prior knowledge:		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	18.0
Project:	70.0
Examinations:	2.0
Total:	150

Enhanced Technologies for Mobility

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Vehicle sensors and oientation in the 2D-/3D surrounding space Conditions for movements of vehicles (usable tracks, obstacles, etc.) Collaboration of onboad and offboard sensors, computers and networks 	30%
Skills Using test facilities as well as hard- and software systems for systems developments and evaluatios Researching strategies in vehicle control and traffic management Elaboration of research and test reports	30%
Personal competences	
Social competence • Facilitating the collaboration and coordination of projects teams • Communication on different social and knowledge levels	40%
Autonomy Capability for self-reliant work and searching for support and litearture Evolution of a structured work flow within a project	

Content:

1. Conduct an R&D project within small project teams concerning actual topics such as autonomous driving, traffic management, traffic sensor or C2X networks

Examination format:

Presentation

Additional rules:

Final project presentation with individual work packages

Compulsory reading:	
Recommended reading:	

Module: IT-Systems Implementation in Logistics	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. Marcus Ulrich Abramowski	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/1.0/1.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-05-04
Compulsory prior knowledge:		

Compulsory prior knowledge:

Basics from Module

Recommended prior knowledge:

Basics from Module "Models and Methods for Engineering and Management"

Recognition of external relevant qualification/experience:

Special regulations:

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	40.0
Project:	40.0
Examinations:	10.0
Total:	150

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Methods for software selections can be reflected Development of the correct implementation strategy in IT-Projects (Big Bang / vs phased) Decisions in structural matters of IT-Implementations Deflect challenges in IT-solutions To manage and align the implementation of IT-solutions in complex and high automized warehouses 	40%
 Skills To find and asses alternative solutions and submit proposals for the of the correct IT-level and the corresponding software selection Operate in warehouse management projects Define the correct grade of automisation Implement logistic processes in IT-Systems Implement business processes (end to end) in IT-Systems To decide between individual and standard software To decide between organisational and IT-related changes 	40%
Personal competences	
Social competence Integration in interdisciplinary teams To manage work tasks in working groups To perform IT-related management tasks Moderation of decision meetings	20%
 Autonomy To develop internal project teams Take responsibility for integrated technical and IT decisions To analyze and evaluate learning and work processes To design and optimize learning and work 	

Content:

- Basics in IT-related logistic processes and harmonization between logistics and ITprocesses
- 2. IT-Systems I Supply Chain Managmenent (SCM) / Enterprise Ressource Planning / Warehouse Management Systems (WMS)
- 3. IT-Systems II Material Flow Control (MFC) / Programmable Logic Control (PLC) / Automization
- IT-Systems III Interfer and selection of the correct control level for tasks between SCM / ERP / WMS / MFC and PLC
- 5. Individual vs. standard software Relationship between standardization and automation level
- 6. Implementation strategies (Big Bang and Phased Projects)
- 7. Global Templates and standardization of logistical approaches
- 8. Change Request Management
- 9. Project phases
- Test procedures Fuctional tests / Integration tests / stress tests / cross system tests / regression tests
- 11. Acceptance procedures Site Acceptance Test (SAT) / Factory Acceptance Tests (FAT)
- 12. Methods for training and go live in logistic systems Knowledge management
- 13. Systems maintenance and service contracts
- 14. IT-implementation as a main part of complex logistics projects

Examination format:

Written exam (25%)

Presentation (75%)

Compulsory reading:

Lange, J. (2013). Warehouse Management mit SAP® EWM. Bonn [u.a.]: Galileo Press.

Mende, U. (1999). Software development for SAP R/3. Berlin [u.a.]: Springer.

Martin, R. (2003). *Agile software development*. Upper Saddle River, N.J.: Pearson Education.

Murray, M. (2016). Warehouse Management with SAP ERP (SAP WM): Functionality and Technical Configuration. Rheinwerk.

Regh, J. (2008). Programmable Logic Controllers. Pearson.

Anderson, G. (2009). SAP Implementation. SAMS.

Kappauf, J. & Lauterbach, B. & Koch, M. (2011). *Logistic core operations with SAP*. Berlin: Springer.

Kirchmer, M. (1998). Business process oriented implementation of standard software. Berlin u.a.: Springer.

Ruhe, G. (2014). Software Project Management: Setting the Context. Springer.

Recommended reading:

Module: IT-Systems Implementation in Production	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. Marcus Ulrich Abramowski	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 1.0/1.0/2.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-05-04
Compulsory prior knowledge:		

Basics from Module

Recommended prior knowledge:

Basics from Module "Models and Methods for Engineering and Management"

Recognition of external relevant qualification/experience:

Special regulations:

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	40.0
Project:	40.0
Examinations:	10.0
Total:	150

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Methods for software selections can be reflected Development of the correct implementation strategy in IT-Projects (Big Bang / vs phased) Decisions in structural matters of IT-Implementations Deflect challenges in IT-solutions To manage and align the implementation of IT-solutions in complex and high automized production systems 	40%
 Skills To find and asses alternative solutions and submit proposals for the of the correct IT-level and the corresponding software selection Operate in manufacturing execution projects Define the correct grade of automisation Implement production processes in IT-Systems Implement business processes (end to end) in IT-Systems To decide between individual and standard software To decide between organisational and IT-related changes 	40%
Personal competences	
Social competence Integration in interdisciplinary teams To manage work tasks in working groups To perform IT-related management tasks Moderation of decision meetings	20%
 Autonomy To develop internal project teams Take responsibility for integrated technical and IT decisions To analyze and evaluate learning and work processes To design and optimize learning and work 	

Content:

- Basics in IT-related logistic processes and harmonization between production and ITprocesses
- 2. IT-Systems I Supply Chain Managmenent (SCM) / Enterprise Ressource Planning (ERP) / Manufacturing Execution Systems (MES)
- IT-Systems II Operating Data (MFC) / Programmable Logic Control (PLC) / Automization
- 4. IT-Systems III Interfer and selection of the correct control level for tasks between SCM / ERP / MES and PLC
- 5. Individual vs. standard software Relationship between standardization and automation level
- 6. Implementation strategies (Big Bang and Phased Projects)
- 7. Global Templates and standardization of logistical approaches
- 8. Change Request Management
- 9. Project phases
- Test procedures Fuctional tests / Integration tests / stress tests / cross system tests / regression tests
- 11. Acceptance procedures Site Acceptance Test (SAT) / Factory Acceptance Tests (FAT)
- 12. Methods for training and go live in logistic systems Knowledge management
- 13. Systems maintenance and service contracts
- 14. IT-implementation as a main part of complex site reorganisation projects

Examination format:

Written exam (25%)

Presentation (75%)

Compulsory reading:

Ake, K. & Clemons, J. & Cubine, M. (2004). *Information technology for manufacturing.* Boca Raton [u.a.]: St. Lucie Press.

Akhtar, J. (2016). Production Planning and Control with SAP ERP. Galileo.

Anderson, G. (2009). SAP Implementation. SAMS.

Kappauf, J. & Lauterbach, B. & Koch, M. (2011). *Logistic core operations with SAP*. Berlin: Springer.

Kirchmer, M. (1998). Business process oriented implementation of standard software. Berlin u.a.: Springer.

Kletti, J. (2007). Manufacturing Execution System - MES. Springer.

Martin, R. (2003). *Agile software development*. Upper Saddle River, N.J.: Pearson Education.

Mende, U. (1999). Software development for SAP R/3. Berlin [u.a.]: Springer.

Regh, J. (2008). Programmable Logic Controllers. Pearson.

Ruhe, G. (2014). Software Project Management: Setting the Context. Springer.

Scholten, B. (2009). *MES Guide for Executives: Why and How to Select, Implement, and Maintain a Manufacturing Execution System.* International Society of Automation.

Recommended reading:

IT-Systems Implementation Transportation Systems

Module: IT-Systems Implementation Transportation Systems	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. Martin Lehnert	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 1.0/1.0/2.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-01-15
Recommended prior knowledge:		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	85.0
Project:	0.0
Examinations:	5.0
Total:	150

IT-Systems Implementation Transportation Systems

Lerning objectives	Anteil
Subject specific competences	
Knowledge Students will be able to explain how applications of IT systems in transport work and interact with systems from the same and neighbouring domains.	40%
 Skills Students can develop concepts for solving IT-related issues in the transport sector. Students can apply industry-specific software and reflect results obtained. They can run largely self-directed IT-related projects in transportation. 	40%
Personal competences	
 Social competence Students can exchange ideas with each other, work together in small groups cooperatively and autonomously to solve subject-specific problems. They can present subject-specific problems and solutions to a target group and represent them in an argumentative manner to experts. 	20%
Autonomy Students can analyze and work on complex topics autonomously. Thes elaborate solid arguments to convince/motivate decision makers and can speak freely about technical topics.	

Content:

- 1. systematisation of IT-systems in transportation
- 2. advanced technologies for IT-systems in individual transport models, implementation, examples
- 3. traffic flow simulation on different levels
- 4. rail traffic operation simulation and IT-systems in the public transport environment
- 5. modern communication technologies in passenger information chances, risks and new traffic data resource
- 6. harmonised data models and data formats for data exchange between applications

IT-Systems Implementation Transportation Systems

Examination format:

programming exercises and tests during the semester (60%) examination at the end of the semester (40%)

Additional rules:

All partial tests must at least be passed.

Compulsory reading:

Recommended reading:

Girnau, G. (2001) - VDV-Förderkreis e.V. Düsseldorf (Hrsg.). Telematics in public transport in Germany = Telematik im ÖPNV in Deutschland. Düsseldorf. Alba

Hansen, I. (2014). Railway timetabling & operations. Hamburg: Eurailpress.

Scholz, G. (2016). IT-Systems in Public Transport - Information Technology for Transport Operators and Authorities. dpunkt

several handbooks and documentations for the used software tools (as announced in the lessons)

Management of Transport Companies

Module: Management of Transport Companies	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. nat. Christian Liebchen & Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/1.0/1.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-01-15
Recommended prior knowledge: Models and Methods for Engineering and Management		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	39.0
Project:	49.0
Examinations:	2.0
Total:	150

Management of Transport Companies

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Know and understand selected basic theories relevant to the field of leadership, and practical applications and concepts used in organizations of all sizes Know and understand the key responsibilities of entrepreneurs in transportation companies, and techniques to implement these within the company's organization 	40%
Skills • Make use of selected quantitative decision making software tools	30%
Personal competences	
 Social competence The students are able to expediently communicate with others and reach goals together The students make some personal experience during active exercises such as generation of ideas (creative techniques), decision making, and short role plays (occasionally) 	30%
Autonomy Autonomously search for material, critically analyze texts and achieve reasonable results.	

Content:

- 1. Responsibility in Transportation Companies (Financial, Safety, ECM)
- 2. Processes and Organisation (Safety, Service & Operations Planning, Qualification, Documentation, Flexibility)
- 3. Controlling (Finance, Resources, Market Division, Transparency, KPIs)
- 4. Leadership (Obligations, Motivation, Employees' Rights)
- 5. Selected Decision Making Tools and Techniques
- 6. Interfaces to typical External Partners

Examination format:

The actual examination procedures can be found in the examination plan, which is provided by the lecturer within the first two weeks of lectures. (100%)

Management of Transport Companies

Compulsory reading:	
Recommended reading:	
Bertsimas, D. (2000). Data, Models, and Decisions", Dynamic Ideas Stippler, M. (2011). <i>Leadership - approaches, developments, trends</i> . Gütersloh: Verl.	
Bertelsmann-Stiftung.	

Mobility Concepts

Module: Mobility Concepts	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. nat. Christian Liebchen & Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/2.0/0.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2019-04-30
Recommended prior knowledge: Models and Methods for Engineering and Management		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	29.0
Project:	59.0
Examinations:	2.0
Total:	150

Mobility Concepts

Lerning objectives	Anteil	
Subject specific competences		
 Knowledge Knowledge of the relevant stakeholders in the transportations market Knowledge of the relevant parameters for transportation systems, including shared mobility 	30%	
 Skills Ability to locate some particular transportation service in the general map of transportation services according to its relevant features Combining the relevant data in order to set up a transportation model, including features for shared mobility 	30%	
Personal competences		
Social competence • Manage work tasks in working groups • Interacting with external partners	40%	
 Autonomy Collecting the relevant information about transportation services Collecting the relevant data to set up a transportation model (demand, network), including features for shared mobility Distilling key facts of scientific studies and interpreting them 		

Content:

- 1. Flavors of shared mobility on a scale between motorized individual traffic and public transport
- 2. How selected types of shared mobility emerge from the past towards future
- 3. Stakeholders in shared mobility (operators, authorities, users)
- 4. Commercial aspects of mobility
- 5. Quality aspects of mobility
- 6. Recent scientific studies regarding shared mobility
- 7. Selected methods for managing mobility
- 8. Aggregator companies to consolidate billing of users (optional)
- 9. Case study

Mobility Concepts

Examination format:

The actual examination procedures can be found in the examination plan, which is provided by the lecturer within the first two weeks of lectures. (100%)

Compulsory reading:

Recommended reading:

Matthias Finger and Maxime Audouin, "The Governance of Smart Transportation Systems", Springer, https://doi.org/10.1007/978-3-319-96526-0

Gereon Meyer and Susan Shaheen, "Disrupting Mobility", Springer, 2017, https://doi.org/10.1007/978-3-319-51602-8

Product Lifecycle Management

Module: Product Lifecycle Management	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. Marcus Ulrich Abramowski & Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/2.0/0.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-05-04
Recommended prior knowledge: Basics from Module "Models and Methods for Engineering and Management"		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	40.0
Project:	40.0
Examinations:	10.0
Total:	150

Product Lifecycle Management

Lerning objectives	Anteil	
Subject specific competences		
 Knowledge Methods for product developments can be reflected Development of a target oriented ramp up stratey Reflection of the relationship between complex product development projects, product data management and ERp-Systems Deflect the complexity of the release strategy of configurable materials in the logistic chain 	40%	
Skills • Evaluate the use of PLM-System in different industry sectors • Operate in product lifecycle management projects • Define the strategy for configuration- release and change management • Implement PLM processes between CAD and ERP • Reflect the use of document management systems	40%	
Personal competences		
Social competence Integration in interdisciplinary teams To manage work tasks in working groups Moderation of decision meetings	20%	
 Autonomy To develop internal project teams Take responsibility for integrated technical and IT decisions To analyze and evaluate learning and work processes To design and optimize learning and work 		

Product Lifecycle Management

Content:

- 1. Product development strategies
- 2. Management methods (=> Collaborative Engineering, Simultaneous Engineering)
- 3. Methods for product development and construction
- 4. Product lifecycle from the development until the "end of life"
- 5. Ramp up management
- 6. Product change management and release strategies
- 7. Configuration management
- 8. Product classification
- 9. Correlation between configuration- release and change management SAP Example with high product complexity
- 10. History of Product Data Management systems
- 11. Distinction CAD, DMU, Rapid Prototyping, PDM and PLM
- 12. PLM-Systems (Siemens / SAP)
- 13. Use of PLM-Systems
- 14. PLM system implementation
- 15. PLM in several Industries Food industry vs. discrete manufacturing

Examination format:

Written exam

Compulsory reading:

Stark, J. (2015). Product Lifecycle Management, Volume 1. 21st Century Paradigm for Product Realisation. Springer International Publishing.

Stark, J. (2016). Decision Engineering. Springer International Publishing.

Saaksvouri, A. (2018). Product Lifecycle Management. Springer.

Hirz, M. (2013). Integrated Computer-Aided Design in Automotive Development. Springer.

Vila, C. (2009). Project-Based Collaborative Engineering Design and Manufacturing Learning with PLM Tools. Springer.

Recommended reading:

Module: Production Systems and Networks	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. Marcus Ulrich Abramowski & Prof. Dr. rer. pol. Jens Wollenweber	

	1
	CP according to ECTS: 5.0
•	As of: 2020-01-15
	nich L/S/LW/P: .0/1.0/0.0 uage: sh

Compulsory prior knowledge:

Desirable Basics from Bachelor-Studies: Basics in Production, Logistics and Quality Management

Recommended prior knowledge:

Basics from Module "Models and Methods for Engineering and Management"

Recognition of external relevant qualification/experience:

Special regulations:

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	80.0
Project:	0.0
Examinations:	10.0
Total:	150

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Decision management in companies can be reflected Development of new concepts and processes regarding horizontal and vertical integration of companies Decisions in site and structural matters of organisation networks Deflect challenges in SCM-Systems Understand modern management processes and the related management functions 	40%
Skills To manage and to solve complex problems in terms of virtual organisations Define business objectives Implement overall business processes (end to end) in IT-Systems Working in comprehensive and complex projects	40%
Personal competences	
Social competence To manage work tasks in working groups To perform simple management tasks	20%
 Autonomy To develop overall project teams Take responsibility for decisions and groups To analyze and evaluate learning and work processes To design and optimize learning and work 	

Content:

- 1. Basics From Taylorism to Virtiual Factories / Production Strategies / Lean Production
- 2. Planning for Manufacture and Assembly I
- 3. Planning for Manufacture and Assembly II
- 4. Flexibility, Modularity and Transformability of Production Systems
- 5. Production Networks
- 6. Strategic Network Planning
- 7. Supply Chain Collaboration
- 8. Added Value in Cooperative Networks
- 9. Controlling of Production Networks
- 10. Coordinated product & supply chain design
- 11. Innovation and Upgrading in Supply Chains
- 12. Global Available to Promise
- 13. Software solutions for Production Networks From EDI to SCM-Systems
- 14. Digital Plant Planning and Simulation

Examination format:

Written exam (60%)

Project (40%)

Compulsory reading:

Ong, S. (2004). *Virtual and augmented reality applications in manufacturing*. London: Springer.

Smith, H. & Fingar, P. (2007). *Business process management*. Tampa, Fla.: Meghan-Kiffer Press.

Hammer, M. & Champy, J. (2004). *Reengineering the Corporation.* New York: HarperBusiness Essentials.

Walker, W. (2005). Supply chain architecture. Boca Raton [u.a.]: CRC Press.

Davim, P. (2018). Progress in Lean Manufacturing. Springer.

Kirchmer, M. (1998). Business process oriented implementation of standard software. Berlin u.a.: Springer.

Vollmann, T. (2004). *Manufacturing planning and control for supply chain management.* Boston, Mass. [u.a.]: McGraw-Hill.

Walter, M. (2015). Multi-Project Management with a Multi-Skilled Workforce. Springer.

Recommended reading:

Supply Chain Management

Module: Supply Chain Management	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. DrIng. Thorsten Brandes & Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/2.0/0.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2020-05-04
Recommended prior knowledge:		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	30.0
Project:	58.0
Examinations:	2.0
Total:	150

Supply Chain Management

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Overview of contemporary concepts related to SCM IT applications and functions within the enterprise application architecture relevant for SCM purposes Aquisition of basic knowledge for the use of SCM functionality within SAP ERP 	20%
Skills Ability to select SCM concepts appropriate to challenges in an enterprise environment Ability to adapt and enhance SCM concepts according to business requirements Understanding of systems dynamics in supply networks	60%
Personal competences	
Social competence • Ability to develop a road map for challenges given within a SCM context • Ability to deliver a significant contribution in team work • Ability to perceive individual agendas related o SCM projects	20%
Autonomy Ability to develop a road map for challenges given within a SCM context	

Content:

- 1. SCM as a management concept vs. category of enterprise software
- 2. Subjects covered may include but are not restricted to: Understanding of systems dynamics (e.g. by utilizing a management game) Contemporary management concepts associated with SCM (MRP I, MRP II, VMI, SMI, CPFR, Pearl Chain, Postponement, Lean SCM etc.)
- 3. Subjects will be delivered by a combination of lectures and case studies; whenever possible the course will work on real life challenges from industry partners

Examination format:	
Written exam	

Supply Chain Management

Compulsory reading:
Depending on specifics of case studies or real life projects within the individual semester.
Recommended reading:

System Dynamics in Production and Logistics

Module: System Dynamics in Production and Logistics	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. DrIng. Gaby Neumann & Prof. DrIng. Thomas Masurat	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/2.0/0.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2019-09-26
Recommended prior kno	owledge:	
Recognition of external	relevant qualification/experier	nce:
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	28.0
Project:	60.0
Examinations:	2.0
Total:	150

Lerning objectives	Anteil
Subject specific competences	
 Knowledge understand the needs for networked/system thinking understand chances and opportunities from scenario management 	25%

System Dynamics in Production and Logistics

 Skills model, analyse, manage complex socio-economic systems apply scenario management procedure, methods, tools for planning, managing and controlling implementation and launching of logistics systems make decisions in complex situations elaborate solid arguments to convince and motivate decision makers select the proper partners and then plan and coordinate the project to implement the solution 	50%
Personal competences	
Social competence communicate conclusions, knowledge and final reasoning in front of specialist and non-specialist audiences clearly and unambiguously work collaboratively in a group	25%
 Autonomy face a new problem under a scientific perspective ability to learn enabling them to continue studying in a manner which is largely self-supervised or independent integrate knowledge and face the complexity of making judgements from incomplete or limited information reflect on the social and ethical responsibilities linked to the application of knowledge and judgements 	

Content:

- 1. Introduction: System Thinking in Logistics and Supply Chain Management
- 2. Scenario Management
 - 2.1. Introduction
 - 2.2. Scenario techniques
 - 2.2.1. Basics
 - 2.2.2. Preparation
 - 2.2.3. Scenario field analysis
 - 2.2.4. Scenario prognostics
 - 2.2.5. Scenario development
 - 2.2.6. Information based for scenario development
 - 2.2.7. Transfer of scenarios

System Dynamics in Production and Logistics

- 3. System dynamics modelling and simulatio
 - 3.1. Introduction, terminology, motivation for complex system thinking
 - 3.2. Structure and behaviour of dynamic systems
 - 3.3. Modelling process
 - 3.3.1. Steps of the modelling process
 - 3.3.2. Formulating a dynamic hypothesis
 - 3.3.3. Formulating a simulation model
 - 3.3.4. Validation and model testing
 - 3.3.5. Policy design and evaluation
 - 3.4. Stocks and flows
 - 3.4.1. Causal loop diagrams
 - 3.4.2. Stocks, flows, and accumulation
 - 3.4.3. Dynamics of stocks and flows
 - 3.5. Dynamics of simple structures
 - 3.5.1. Path dependence and positive feedback
 - 3.5.2. Delays
 - 3.5.3. Co-flows and aging chains
 - 3.6. Modelling decision making, human behaviour, expectation formation
 - 3.7. Manufacturing and labour supply chains as dynamic systems

Examination format:

Presentation (10%)

Project (20%)

Project (20%)

Written exam (50%)

Compulsory reading:

Recommended reading:

Sterman, J. (2000). Business Dynamics. Systems Thinking and Modeling for a Complex World. Mc Graw Hill Education.

Transportation Technologies

Module: Transportation Technologies	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 2	Semester part time:	Duration:
Hours per week per semester: 4.0	Of which L/S/LW/P: 2.0/2.0/0.0/0.0	CP according to ECTS: 5.0
Form of course: Elective	Language: English	As of: 2018-08-03
Compulsory prior knowledge:		
Recommended prior knowledge:		
Recognition of external relevant qualification/experience:		
Special regulations:		

Workload distribution	Hours:
In class:	60.0
Pre- and post-course work:	30.0
Project:	56.0
Examinations:	4.0
Total:	150

Transportation Technologies

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Knowledge of relevant engine technologies Knowledge of emission calculation Understand and calculate emissions in certain usage scenarios Explain the role of different technologies in a worldwide context 	30%
 Skills Describe, analyze and modify complex calculation schemes in a structured and directed manner Perform the transfer of various methods to new fields of application. Be able to direct the search for worldwide data sources and extract relevant information. Be ablte to structure a complex new task, divide it into subtrasks and priorize these tasks. 	50%
Personal competences	
Social competence • Be able to work in teams, organize team work and manage a project team • Be able to critically reflect and self-organize learning processes • Be able to communicate in a team work context and to present results	20%
 Autonomy Be able to analyze and work on complex topics autonomously. Be able to speak freely about technical topics. Be able to adopt and assess critically specialized, advanced knowledge. 	

Transportation Technologies

Content:

- 1. Overview of engine technologies for cars, busses and trucks
 - 1.1. Combustion engines
 - 1.2. LNG engines
 - 1.3. Hydrogen engines
 - 1.4. Electric engines
- 2. Importance/dispersion of technologies, trends and future developments
 - 2.1. Worldwide market situation
 - 2.2. Trends related on engine technology
- 3. Emission situation
 - 3.1. Analysis of product lifecycle
 - 3.2. Emission analysis during driving situations
 - 3.3. Production emissions
- 4. Case study cep use cases

Examination format:

Presentation

Compulsory reading:

Rodrigue, J. & Comtois, C. & Slack, B. (2017). The geography of transport systems.

London: Routledge.

Recommended reading:

Master's Colloquium

Module: Master's Colloquium	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. pol. Jens Wollenweber	

Semester: 3	Semester part time:	Duration:
Hours per week per semester: 0.0	Of which L/S/LW/P: 0.0/0.0/0.0/0.0	CP according to ECTS: 6.0
Form of course: Compulsory	Language: English	As of: 2019-10-01
Compulsory prior know Master's thesis	ledge:	
Recommended prior know	owledge:	
Recognition of external	relevant qualification/experier	nce:
Special regulations:		

Workload distribution	Hours:
In class:	0.0
Pre- and post-course work:	0.0
Project:	179.0
Examinations:	1.0
Total:	180

Master's Colloquium

Lerning objectives	Anteil
Subject specific competences	
 Knowledge Students can identify and present the main contents and results of their master thesis. apply technical and methodological knowledge to explain or justify their work. 	20%
 Skills Students can prepare the essential contents and results of their master thesis in a structured, comprehensible and descriptive way in the form of a presentation. design the scope of the presentation according to the specified time fund. 	40%
Personal competences	
 Social competence Students can present the essential contents and results of their master thesis in a focused, comprehensible and understandable manner. answer specialist questions about your master's thesis and its methodological environment in a factual manner. discuss factual contexts. 	40%
Autonomy Students can critically reflect on their work, their approach and their results.	

Content:

1. Contents, procedure, results, findings of the master thesis

Examination format:

Oral exam (100%)

Additional rules:

15 minutes presentation, 30 minutes questions and discussion

Master's Colloquium

Compulsory reading:	
Recommended reading:	

Master's Thesis

Module: Master's Thesis	
Degree programme: Technical Management	Degree: Master of Engineering
Responsible for the module: Prof. Dr. rer. pol. Jens Wollenweber	

Semester:	Semester part time:	Duration:
Hours per week per semester: 0.0	Of which L/S/LW/P: 0.0/0.0/0.0/0.0	CP according to ECTS: 24.0
Form of course: Compulsory	Language: English	As of: 2018-12-17
Recommended prior known	owledge:	
Recognition of external	relevant qualification/experier	nce:
Special regulations:		

Workload distribution	Hours:
In class:	0.0
Pre- and post-course work:	0.0
Project:	720.0
Examinations:	0.0
Total:	720

Lerning objectives	Anteil
Subject specific competences	
Knowledge	20%

Master's Thesis

Skills	60%
 Students can conduct scientific work in accordance with established scientific standards. 	
Personal competences	
Social competence Students are empowered to indenpendently work on a conrete problem, which as far as possible corresponds to their personal interest, and develop their own solutions. The offered and chosen topics should reflect on current problems and focus on practical applications.	20%
 Students will work on their master's thesis for a restricted time period of 20 weeks during their third semester. The master's thesis is part of the academic record. Students demonstrate their ability to independently work on a specific problem within their fields of study according to established scientific standards. 	
Content:	
1. Tasks, problems and actions in science and practice	
Examination format:	
Paper (100%)	
Compulsory reading:	
Recommended reading:	